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ABSTRACT-The Helmholtz-type equation arises in dir-st methods are now available that are far superior 
many areas of fluid dynamics] and, in recent years, there to .,idely used iterative methods. For problems involving 
has been a rapid increase in the numerical procedures irregular domains, mixed boundary conditions, and 
available for solving the equation. In this note, the variable Helmholtz coefficients, however, existing direct 
various methods currently available are discussed, and methods often cannot be used with the same flexibility 
representatives from the main categories are compared. as iterative methods; there is a continuing need to extend 

We suggest that for certain problems, the most im- direct methods to these more general cases. 
portant of which is Poisson’s equation on a rectangle] 

1. INTRODUCTION 

One of the most frequently encountered equations of 
numerical weather prediction, and fluid dynamics generally, 
is the diagnostic equation 

v24-“(z,y) 4=f(zJy> (1) 

where V2 is the two-dimensional Laplacian operator, 
cr(z,y) is a non-negative function, and f(z,y) is a forcing 
function. Included in the class of eq (1) are the equivalent 
barotropic vorticity equation [in which 4 is the height of 
the 500-mb level and a(z,y)=p, the Cressman correction 
factor]; the baroclinic filtered equation [where is the 
stream function tendency a t  some level and a(z,y) = O ] ;  the 
linear balance equation; and, most recently, the Helm- 
holtz-type equations associated with the semi-implicit 
time differencing schemes. 

When approximated in the usual way by a finite- 
difference analog, eq (1) reduces to a system of linear 
equations 

AX=b (2) 

where, for a finite-difference grid with MXN interior 
points, A is an MNXMN block tridiagonal matrix. 

Many algorithms of varying generality, speed, accuracy, 
and efficiency have been devised for solving eq (2). They 
may be divided into two broad cIasses; namely, the itera- 
tive methods and’ the direct or “exact” methods. Some of 
these methods have been developed only recently, and a 
review of the procedures currently available is presented 
in the next section. 

2. DISCUSSION OF AVAILABLE ALGORITHMS 

Iterative Methods 

The most widely used iterative methods are the 
Liebmann successive over-relaxation method (SOR) and 
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the alternating direction implicit method (ADI) (Varga 
1962, ch. 3 and 7). Because of its simplicity, the SOR 
method has found wide acceptance] particularly in its 
Sheldon-speeded form (Sheldon 1962) ; the superior speed 
of the AD1 method has apparently not outweighed the 
associated coding difficulties and slightly increased storage 
requirements. 

Direct Methods 
By taking advantage of the special structure of the 

set of linear equations given in eq (2), researchers have 
devised many methods in recent years that are con- 
siderably faster and more accurate than the older iterative 
methods. Dorr (1970) has divided the direct methods, 
all of which avoid the excessive number of operations 
involved in solving eq (2) by standard elimination 
procedures, into four main categories: 

1. Block methods, which use the fact that A is blpck 
tridiagonal. The “two-pass” recursion form (Lindzen 
and Kuo 1969) is the most familiar. Karlqvist (1952) has 
discussed this approach in detail for the Poisson equation. 
The block methods are generally slower than the other 
direct methods. 

2. Cyclic reduction methods, which reduce the dimen- 
sions of the matrix problem to be solved. These methods 
rely on the matrix A being two-cyclic (Varga 1962, p. 126) 
thereby allowing the original matrix equation to be 
reduced in a recursive manner to a set of equations 
involving a much smaller matrix. This type of method is 
most efficient when the reduction procedure can be 
repeated until there is only one block of the original 
matrix remaining. This procedure places a restriction on 
the number of interior points of the M x N grid; either 
Mor N should be equal to 2k+1 -1 where k is an integer. 
In  some cases, however, a combination of cyclic reduction 
and matrix decomposition (discussed later) is advanta- 
geous. For a more complete discussion, the reader is 
referred to Buzbee et al. (1970) and Hockney (1969). 
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3. Matrix decomposition or tensor product methods, 
which depend on the use of coordinate transformations 
to reduce the problem to a simple tridiagonal form that 
has an easily computed solution. Lynch et al. (1964) have 
described the general form of this method. The dimension 
reduction method (DRM), as elaborated by Ogura (1969), 
is a particularly simple version that can be applied when 
a fast Fourier transform is available. 

4. Fourier methods, as outlined by Hockney (1965), 
enable the fast Fourier transform to be applied directly 
in certain somewhat restrictive circumstances. The trigo- 
nometric interpolation method applied by Williams (1967) 
in his numerical experiments with a differentially heated 
rotating annulus is an example of the Fourier method. 

An independent method recently devised by Hirota et 
al. (1970) and referred to  as the generalized sweep-out 
method (GSM) appears to combine flexibility with speed. 
This method requires the determination of residuals 
"swept out" after an initial guess has been inserted on a 
line (row) of the grid. It should be noted that this method 
can only compete with other methods when the inverse 
of the residual matrix arising in the problem has been 
calculated previously. I n  most cases, this is not expected 
to be a serious problem because the residual matrix 
depends only on the grid size and is independent of 
boundary conditions and forcing function. 

I n  general, iterative methods have been easier to apply 
to irregular domains than have most direct methods. For 
nonrectangular domains, the matrix A of eq (2) is no 
longer in the block-tridiagonal form suitable for the most 
efficient direct methods. Buzbee et al. (1971) have shown, 
however, that it is possible to recast eq (2) into a form 
that is once again amenable to  direct methods. 

The nature of the Helmholtz coefficient is also of crucial 
importance in determining the applicability and perform- 
ance of both direct and iterative methods for solving 
eq (1). When the Helmholtz coefficient is variable, as it 
frequently is in numerical weather prediction [e.g., 
a(%, y) may include variable map factor terms], then 
many direct methods can no longer be easily applied. 
Furthermore, when the Helmholtz term becomes large, 
the iterative methods converge rapidly because of the 
diagonal dominance of matrix A in eq (2). I n  view of the 
significance of the Helmholtz coefficient, it was decided to 
investigate the Poisson and Helmholtz equations sepa- 
rately, because each is important in its own right, and 
because general conclusions covering both are really not 
possible. 

3. POISSON'S EQUATION 

Poisbon's equation [cu(s, y) = O ]  is an extremely important 
special case of eq (1); the stream function-vorticity equa- 
tion is one of the fundamental equations of classical 
incompressible fluid dynamics. Iterative methods have 
been widely used for solving Poisson's equation and the 
SOR method has been in favor from the time of the first 
attempts a t  numerical weather prediction in th; early 
1950s (e.g., Charney and Phillips 1953). With the rapid 
development of digital computer technology over the past 
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2 decades, fluid dynamicists began to attempt more ambi- 
tious modeling efforts, and new problems arose. Numerical 
modeling of the oceanic circulation, for example, required 
integration times of the order of months to model just 
the simple barotropic response (Veronis and Stommel , 

1956) which meant solving Poisson's equation many thou- 
sands of times. The accumulated errors associated with 
economically practicable error tolerances rendered SOR 
obsolete for this type of problem (Veronis 1966, Crowley 
1970). Quicker, more accurate methods were needed, and 
there has been an intensive search for such algorithms in 
recent years. The situation has not been so acute in 
numerical weather prediction, which has typically involved 
integration periods of several days only. I n  such circum- 
stances, $OR has remained popular. However, the recent 
interest in problems such as fine-mesh modeling and the 
increasing availability of efficient direct methods suggests 
that a comparison of direct and iterative methods is 
worthwhile so that some guidelines may be established. 

Four of the methods discussed in section 2 were chosen 
for comparison in terms of speed and accuracy. The SOR 
method was used as a representative of the iterative 
methods, and the Buneman cyclic reduction method 
(DCR), the Ogura DRM, and the Hirota et al. GSM 
were selected to represent the direct methods in accord- 
ance with table 1.' 

Each method was used to solve the Poisson equation 

(3) 

where 0 

is a forcing function derived from a 500-mb height field, 
4::;. The boundary conditions for eq (3) are the boundary 
values of 4::;. 

SOR 
A flat, initial-guess field for SOR was provided by using 

the mean of the initial field. The iterative procedure was 
stopped when the relative error, 

Ft, 1 =+:? 1 . 5  ++:? 1. 5 ++:pi + 1 + 4::; - 1 -@:pi 

at the 7th iteration was everywhere less than a prescribed 
6. I n  table 2 the times taken to reach convergence on an 
IBM 360165 computer are shown plotted against selected 
values of 6. For values of 6 less than double precision 
arithmetic was required. The number of iterations ranged 
from eight for 6=10-' to  221 for 6=10-lo on a 6 5 x 6 5  
grid. The corresponding number of iterations required on 
a 3 3 x 3 3  grid ranged from four for 6=10-' to 111 for 
6= 10-10. 

When considering the times taken by SOR to reach 
convergence to a given error tolerance, one must remember 
that these times are inflated by the flat, first-guess field. 
In numerical weather predicti'on problems, a good guess is 
frequently available from the fields at  the previous time 

1 No attempt was made to assess the trigonometric methods beceuse of the detailed 

2 Mention of a commercial product does not constitute an endorsement. 
investigation carried out by Hockney (1969). 



TABLE 1.-Operational counts for the solution of Poisson's equation 
by various iterative and direct methods (based in  part on tabla 1 and 
B of Dorr 1970) 

Method Operations count 

3 3 x 3 3  (a) 
(b) 

6 5 x 6 5  (a) 
(b) 

Block 6 NJ 
(Karlqvist 1952) 

Cyclic Reduction !N210g2 N (Buzbee et. al. 1970) 2 
Matrix Decomposition 8 Na 
(Lynch et al. 1964) 

(Ogura 1969) 

(Hockney 1965) 
SQR* 3Nalog2N 2 

Matrix Decomposition lON'log2N 

Fourier Series 5 N210g2 N 

ADI* 4 w  (lOg2N)' 

*The operations counts for SOR and AD1 are based on the as- 
sumption that the iterations are terminated when the initial error 
has been reduced by a factor of h2, where h is the grid interval 
(Lynch et. al. 1964, p. 193, Dorr 1970, p. 259). 

0. 21 0. 29 5. 6 [71] 10-6 
0. 22 lO-l3  0. 30 lO-l3  7. 4 [ l l l ]  10-10 
0. 89 1. 25 10-6 42. 3 [141] 10-6 
0. 90 10-13 1. 27 10-13 75. 9 (2211 10-10 

step, and the number of iterations is greatly reduced. 
Hockney (1969) has discussed the influence of the first 
guess on convergence for,,a variety of iterative methods. 

DRM 

, -," 

The D R M  takes only 0.29 and 1.25 s to solve the Poisson 
problem on the 3 3 x 3 3  and 6 5 x 6 5  grids, respectively, 
using single precision arithmetic. The maximum error 
is 1.1X10-6 and is effectively set by the single precision 
limit of the IBM 360/65. It is clear from table 2 that 
double precision arithmetic may be used to obtain very 
accurate solutions with only a very slight loss of speed 
but a possibly prohibitive increase in storage requirements. 

DCR 

As may be expected from the operational counts given 
in table 1, DCR is faster than DRM, taking 0.21 s for the 
3 3 x 3 3  grid and 0.89 s for the 6 5 x 6 5  grid, using single 
precision arithmetic (table 2) .  Again, these times are 
only marginally altered by double precision'-arithmetic. 

GSM 

Contrary to expectations, GSM failed to yield a 
solution on both the 3 3 x 3 3  and 6 5 x 6 5  grids. The extra- 
ordinary precision required in certain parts of the com- 
putation renders this method impractical for even mod- 
erate grid sizes with the computers generally available at  
present (McAvaney and Leslie 1972, Roache 1971). 
For an IBM 360/65, N = 2 0  is the maximum array size 
that can be handled by GSM using double precision arith- 
metic. For larger N ,  greater than double precision arith- 
metic is needed, thereby removing some of the speed 
advantage and creating prohibitive storage requirements. 
Splitting the domain in the manner suggested by Hirota 

3 The version of DCR used in this investigation is the first published form (Buneman 
1969). Buzbee et al. (1971) have given an alternative formulation which is slightly faster 
but requires more storage. 

TABLE 2.-Time required to solve the two-dimensional Poisson 
equation on a rectangular domain b y  the DCR, DRM, and SOR 
algorithms, using an IBM 360/66 machine, with Fortran IV level 
H,  Opt=d complier. Row (a )  refers to single precision times and 
errors, row ( b )  to double precision. The bracketed figures i n  the jirst 
SOR column refer to the number of iterations required to reach the 
specified level of convergence. 

I DCR I DRM I 8 0 R  
Mesh 

Time Relative Time Relative Time Relative 
(s) Error (s) Error Error 

et al. (1970, p. 166) offers no real alternative because one 
is faced with the task of inverting a 2 N X 2 N  matrix to 
at  least double, but most likely quadruple, precision 
accuracy. Even if such a task were considered worth- 
while, it would still be necessary to use quadruple pre- 
cision arithmetic (Roache 1971, p. 53, fig. 2) during the 
actual computation and once again the advantage will be 
lost. 

4. HELMHOLTZ-TYPE EQUATION 

The Helmholtz-type equation [a(z,y)  > O ]  arises in such 
numerical weather prediction models as the baroclinic 
filtered model, and models with semi-implicit time dif- 
ferencing (Robert et al. 1972, Gerrity and McPherson 
1971). As noted earlier, the size of the Helmholtz co- 
efficient is extremely important in determining the 
convergence rate of iterative methods. For large values 
of a, the block matrix A of eq (2) is strongly diagonally 
dominant and few iterations are required by SOR. For 
small values of a, the convergence rate of SOR approaches 
that for solving Poisson's equation. 

In  barotropic models with Cressman phase correction 
or semi-implicit time differencing, the Helmholtz term is 
indeed small and the results of section 3 carry over with 
only slight m~dification.~ Certain multilevel models, 
however, such as n-level models with semi-implicit time 
differencing, require n Helmholtz equations to be solved 
at  each time step; one corresponding to the barotropic 
mode, and n-1 corresponding to the baroclinic modes. 
The Helmholtz coefficient is small for the barotropic 
mode but increases to very large for the slowest baroclinic 
modes. Thus, the best method for the fastest modes may 
not necessarily be the most suitable for the slower modes. 

As a means of investigating the effect of the Helm- 
hijltz coefficient, the six-level, N30, primitive-equation 
model, developed at  the Commonwealth Meteorology 

4 The finite-difference approximation to eq (1) using the conventi0,nal five-point 
Laplacian difference operator is 

+ i + ~ , i + + i - ~ ,  i + + i .  i+ l++i .  i- l-(4+CYhz)~i. i 'h2/i .  i, 

assuming a constant grid interval, h .  Large ameans h2a> >4, and small olmeans h 2 c A  <4 .  
6 In  these cases, h b  is about an order of magnitude smaller than 4. The convergence 

rate of SO R increases rapidly with increasing C Y ;  and, even for these models; Convergence 
is measurably faster than for Poisson's equation. 
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TABLE 3.-The variation i n  the Helmholtz parameter for each eigenmode appearing in  a six-level primitive-equation model with semi-implicit 
' time differencing 

Eigenvalue number (n) 

2 3 4 6 6 

Eigenvalue a, 
Helmholtz coefficient a,h2 

4 . 4 ~  10-16 2 . 1 ~  10-16 1 . 7 ~  10-14 5 . 6 ~  10-14 1 . 3 ~  10-13 2.8X 10-13 
3.1X 10-1 1.4X 100 1.2x 10' 4.1X 10' 9 x  10' 2.0x 102 

TABLE 4.-Time (s)  required to solve the two-dimensional Helmholtz equation on a rectangular domain (66x66) b y  the DCR, DRM, and SOR 
algorithms using an I B M  360166 machine with the Fortran IV level H, Opt=d compiler. The values of the Helmholtz coeficient for each 
eigenmode are given in  table 3. I n  the case of SOR, the numbers in  brackets are the number of iterations required to achieve the specified 
accuracy, 6 .  The total time taken to solve the Hekholtz equations for the set of six eigenmodes is given in  the last column. The last line of the 
table shows the values of wb (the optimum relaxation parameter) used for the solution of each eigenmode using SOR. 

1 

\ 

0. 89 0. 89 0. 89 0. 89 0. 89 0. 89 
1. 25 1. 25 1. 25 1. 25 1. 25 1.25 

0 .30  (1) 0.30 (1) 0 . 3 0  (1) 0.30 (1) 0.30 (1) 0.30 (1) 
2. 10 (7) 1.30 (4) 0.91 (3) 0.91 (3) 0.60 (2) 0.60 (2) 
4.9 (16) 2. 10 (7) 1.30 (4) 0. 91 (3) 0.91 (3) 0.91 (3) 
7.6 (25) 3.2 (10) 1.6 (5) 1.3 (4) 1.3 (4) 1.3 (4) 

3. 3955X lo-' 1. 5689X 10-1 3. 4649X 10-2 1. 8546X 10-2 9. 6224X 10-3 4. 9211X 

Method 

5. 3 
7. 5 
1. 8 
6. 4 

11. 0 
16.3 

DCR 
DRM 
SOR (6 =loo) 

(6 = 10-2) 
(6=10-4). . 
(6 = 10-6) 

W b  

Eigenmode 

1 2 3 4 6 6 
Totals 

Research Centre (Gauntlett and Hincksman 1971) 
and currently being converted to semi-implicit time- 
differencing (Gauntlett 1971), was used to provide 
representative values of a. By using real initial data, 
we were able to provide good first guesses to SOR, thereby 
removing the bias in favor of the direct methods described 
in section 3. Each time step requires that six Helmholtz 
equations be solved, the Helmholtz coefficients varying 
from small to very large (table 3). The times taken to 
advance one time step forward; that is, to solve all six 
equations, was compared for a variety of combinations 
of direct and iterative methods (table 4). Variations of 
map factor have been ignored to ensure that a! is constant; 
otherwise, the DCR and DRM methods may not be 
applied in their present form. Such an assumption is, 
of course, valid only for such limited-area grids as the 
Bushby-Timpson grid (Bushby and Timpson 1967). 
The implications of the present requirement of constant 
a! for the fastest direct methods will be discussed next. 

The times taken by DCR and SOR on a 65x65 rec- 
tangular subset of the original N30 hemispheric domian 
reveal that for an acceptable level of convergence (Le., 
error tolerance no greater than SOR is still slower 
than applying DCR to all six equations (table 4). How- 
ever, the difference is now not nearly so great as in 
section 3 because of the very rapid convergence for large 
values of the Helmholtz coefficient. The DCR method 
is about as fast as three iterations with SOR on the 
65x65 grid; and, for the four slowest baroclinic modes, 
less than five iterations of SOR are needed for a relative 
error tolerance of which is approximately the 
accuracy of DCR on an IBM 360/65 using single pre- 
cision arithmetic. The DCR method requires 5.3 s to 
solve all six equations on the 65x65 grid, while SOR 
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takes 16.3 s for approximately the same level of accuracy, 
including 10.8 s for the two fastest modes. For a slightly 
lower relative error tolerance of (one that is accept- 
able in many problems), SOR requires only 11.0 s. 
This suggests that, if the number of time steps was not 
too large, a case would still exist for the continued use 
of SOR, a t  least for some of the modes, even if the direct 
methods can be generalized to include variable Helm- 
holtz coefficients and irregular domains (e.g., hemispheric 
models in which the domain is a circle). The simplicity 
of .the SOR code compared with many direct methods 
(DCR being a notable exception) and the small addi- 
tional storage demands are further factors in favor of 
the method. 

5. SUMMARY 

In  section 3 it was seen that direct methods' are avail- 
able (such as DCR and DRM) that are clearly superior 
to SOR in- terms of speed and accuracy, for solving 
Poisson's equation on a rectangular domain with specified 
boundary values. This conclusion was supported by a 
comparative evaluation of the methods with typical 
meteorological fields6 Another direct method, GSM, is 
intrinsically the fastest of all the methods discussed in 
section 2 but is not suitable for computers generally 
available at  present because of its severe demands for 
precision. Only when modest accuracy is required and 
good first guesses are available does SOR seriously 
compete with the direct methods for the class of problems 
considered in section 3. 

Speed and accuracy are, of course, not the only con- 

e The investigation was repeated using a random field generated by the IBM pseudo- 
random-number generator subroutine, RANDU, and the results confirmed the con- 
clusions reached in section 3. 



siderations when a method is being assessed. Like most 
iterative methods, the SOR method is readily generalized 
to irregular domains and mixed boundary conditions. 
Furthermore; i t  is simple to code and involves little 
overhead storage cost. Direct methods, on the other 
hand, are not yet sufficiently flexible. Extensive additional 
coding is normally required to handle mixed boundary 
conditions, while the application to an irregular domain 
usually requires some type of transformation of either 
the coordinate system being used or the matrix arising 
in ‘the formulation of the problem. Intensive research in 
recent years has produced some significant advances, 
however. For example, Buzbee et al. (1970, 1971) have 
shown how to generalize some direct methods to mixed 
boundary conditions and many types of irregular domains , 
and Le Bail (1972) has discussed the extension of Fourier 
methods to more general problems including mixed boun- 
dary conditions. 

The conclusions reached regarding the choice of method 
for solving Helmholtz-type equations on a rectangular 
grid are not as definite as they were for the Poisson equa- 
tion. As was discussed in section 4, the magnitude of the 
Helmholtz coefficient greatly influences the rate of con- 
vergence of the iterative methods. In particular, for large 
values of the Helmholtz coefficient, SOR required very 
few iterations to reach a high degree of accuracy. The 
relative flexibility of the iteractive methods was further 
illustrated in section 4, where i t  was seen that the fastest 
direct methods could not be applied to the case where the 
Helmholtz coefficient varies over the grid. In  view of the 
growing importance of the Helmholtz equation in mete- 
orology and other related fields, i t  is hoped that the current 
interest in extending direct methods will continue and that 
many of the present limitations will eventually be 
removed. 
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